ANALYSIS AND SYNTHESIS OF DISTURBANCE OBSERVER AS AN ADD-ON ROBUST CONTROLLER

Hyungbo Shim
(School of Electrical Engineering, Seoul National University, Korea)

in collaboration with Juhoon Back, Nam Hoon Jo, and Youngjun Joo under the support from Hyundai Heavy Industries, Co., LTD.

Oct. 15, 2010, at UCSB
Overview

- “disturbance observer (DOB)”
 - dates back to the Japanese article (K. Ohnishi, 1987)
 - has been of much interest in control application community, but did not draw much attention in control theory community
 - original idea is intuitively simple, but less analyzed rigorously

- This talk is about
 - developing theoretical framework for DOB approach, and appreciation of it as a robust control tool
 - presentation of robust stability condition and robust nominal performance recovery
 - discussion about various aspects of DOB, and extension to nonlinear systems
Overview

Problem statement

Nominal model plant P_n:
\[\dot{x} = f(x) + \bar{g}(x)u_r \]
\[y = \bar{h}(x) \]

Real uncertain plant P:
\[\dot{x} = f(x) + g(x)(u + d) \]
\[y = h(x) \]

Output feedback controller C:
\[\dot{c} = \Gamma(c, y, r) \]
\[u_r = \gamma(c, y, r) \]

Inner-loop dynamic controller:
\[u = u_r + \text{“output of an inner-loop controller (DOB)”} \]

The same input-output behavior!
Overview

Problem statement

- not only just the same steady-state behavior, but also the same transient behavior (with the same IC between the nominal and the real)
- important feature required by industry where settling time, overshoot, etc., should be uniform among many product units
- a sharp contrast to other robust or adaptive redesign approach which possibly changes the transient behavior

The same input-output behavior!
Linear DOB: Intuition
$P(s)$: uncertain, but known relative degree $r \geq 1$

$P_n(s)$: nominal model having the same rel. deg r

$C(s)$: outer-loop controller for $P_n(s)$

$Q(s)$: stable low-pass filter having rel. deg $= r$
Linear DOB: Intuitive justification

\[y(s) = \frac{P(s)P_n(s)}{P_n(s) + (P(s) - P_n(s))Q(s)} u_r(s) + \frac{P(s)P_n(s)(1 - Q(s))}{P_n(s) + (P(s) - P_n(s))Q(s)} d(s) \]

\[Q(j\omega) \approx 1 \quad \Rightarrow \quad y(j\omega) \approx P_n(j\omega)u_r(j\omega) \]
\[Q(j\omega) \approx 0 \quad \Rightarrow \quad y(j\omega) \approx 0 \]

(\text{where } u_r(j\omega) \approx 0 \approx d(j\omega))
The argument so far does not present real power and limitations.

- robust stability is still of question
- what about transient performance recovery?
- unanswered “observations from practice”:
 - “It does not work for non-minimum phase plant.”
 - “High bandwidth of $Q(s)$ destabilizes the closed-loop.”
 - “It cannot handle large parameter variation.”
 - “Higher order $Q(s)$ leads to instability.”
- can we extend the DOB-based controller for uncertain nonlinear plants?
Our Starting Point

\[Q(j \omega) \approx 1 \quad \Rightarrow \quad y(j \omega) \approx P_n(j \omega) u_r(j \omega) \]
\[Q(j \omega) \approx 0 \quad \Rightarrow \quad y(j \omega) \approx 0 \]

(where \(u_r(j \omega) \approx 0 \approx d(j \omega) \))

\[\therefore \text{ bandwidth of } Q(s) \text{ should be large} \]

\[Q(s) = \frac{a_0}{(\tau s)^r + a_{r-1}(\tau s)^{r-1} + \cdots + a_1(\tau s) + a_0} \]
\[\tau > 0 \quad : \text{sufficiently small} \]
Normal form realization of $Q(s)$

\[Q(s) = \frac{a_0}{(\tau s)^r + a_{r-1}(\tau s)^{r-1} + \cdots + a_1(\tau s) + a_0} \]

\[
\begin{align*}
\dot{q} &= Q(\tau)q + \frac{a_0}{\tau^r}By, \quad y_q = q_1, \\
\dot{p} &= Q(\tau)p + \frac{a_0}{\tau^r}Bu, \quad y_p = p_1,
\end{align*}
\]

Byrnes-Isidori Normal Form

\[
Q(\tau) = \begin{bmatrix}
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
-\frac{a_0}{\tau^r} & -\frac{a_1}{\tau^{r-1}} & \cdots & -\frac{a_{r-1}}{\tau}
\end{bmatrix}, \quad B = \begin{bmatrix} 0 \\
\vdots \\
0 \\
1 \end{bmatrix}
\]
Representation of P (nonlinear plant)

$P : \quad y = x_1$
$\dot{x}_1 = x_2$
$\dot{x}_2 = x_3$
\vdots
$\dot{x}_r = f(z, x) + g(z, x)(u + d)$
$\dot{z} = f_0(z, x)$

f, g, f_0: unknown
d: unknown disturbance

$\dot{x} = Ax + B[f(z, x) + g(z, x)(u + d)]$
$\dot{z} = f_0(z, x)$
$y = Cx$

$A = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$
$C = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$
Representation of nominal plant P_n (with Q)

\[P_n : \quad \bar{y} = \bar{x}_1 \]
\[\dot{\bar{x}}_1 = \bar{x}_2 \]
\[\vdots \]
\[\dot{\bar{x}}_r = \bar{f}(\bar{z}, \bar{x}) + \bar{g}(\bar{z}, \bar{x})u_r = \bar{f}(\bar{z}, \bar{x}) + \bar{g}^* \hat{u}_r \]
\[\dot{\bar{z}} = \bar{f}_0(\bar{z}, \bar{x}) \]

P_n^{-1}: since $\bar{x} = [\bar{y}, \cdots, \bar{y}^{(r-1)}]'$,
\[\dot{\bar{z}} = \bar{f}_0(\bar{z}, [\bar{y}, \cdots, \bar{y}^{(r-1)}]') \]
\[\hat{u}_r = \frac{1}{\bar{g}^*} [\bar{y}^{(r)} - \bar{f}(\bar{z}, [\bar{y}, \cdots, \bar{y}^{(r-1)}]')] \]

$P_n^{-1}Q(s)$: since $[\bar{y}, \dot{\bar{y}}, \cdots, \bar{y}^{(r-1)}]' = [y_q, \dot{y}_q, \cdots]' = [q_1, q_2, \cdots, q_r]' = q$,
\[\dot{\bar{z}} = \bar{f}_0(\bar{z}, q) \]
\[\dot{q} = Q(\tau)q + \frac{a_0}{\tau^r}By \]
\[\hat{u}_r = \frac{1}{\bar{g}^*} [\dot{q}_r - \bar{f}(\bar{z}, q)] \]

\[\hat{u}_r = \frac{\bar{g}(\bar{z}, \bar{x})}{\bar{g}^*} u_r \]

\[\hat{u}_p = \frac{1}{\bar{g}^*} [\dot{q}_r - \bar{f}(\bar{z}, q)] \]
Summary: Problem Statement

State-space realization of DOB structure

\[
\begin{align*}
\dot{x} &= Ax + B[f(z, x) + g(z, x)(u + d)] \\
\dot{z} &= f_0(z, x) \\
\dot{z}_c &= f_0(z_c, q) \\
\dot{q} &= Q(\tau)q + \frac{a_0}{\tau^r} Bx_1 \\
\dot{p} &= Q(\tau)p + \frac{a_0}{\tau^r} Bu
\end{align*}
\]

\[u = p_1 - \frac{1}{\bar{g}^*} (\dot{q}_r - \bar{f}(z_c, q) - \bar{g}^* \hat{u}_r)\]

\[\hat{u}_r = \frac{\bar{g}(z_c, q)}{\bar{g}^*} u_r\]

\[y = x_1\]

\[u_r \rightarrow P_n \rightarrow y\]

\[r \rightarrow C(s) \rightarrow \hat{y}_r \rightarrow u \rightarrow \hat{u}_r \rightarrow d \rightarrow u_p \rightarrow P(s) \rightarrow y\]

\[? \mid \tau \ll 1\]
(too brief) Review of Tikhonov’s Theorem

\[
\begin{align*}
\dot{x} &= f(x, y, u, \varepsilon) \\
\varepsilon \dot{y} &= g(x, y, u, \varepsilon) \\
0 < \varepsilon &\ll 1
\end{align*}
\]

: Standard singularly perturbed form
\(x: \text{slow}, \ y: \text{fast}\)

Tikhonov’s theorem says ...

Boundary-Layer Subsystem:
\[y' = g(x, y, u, 0)\]

If asympt. stable, \(y(t) \to h(x, u)\).

Quasi-Steady-State Subsystem:
\[\dot{x} = f(x, h(x, u), u, 0)\]
Closed-loop system in the Standard Singular Perturbation Form

With coordinate change given by

\[\xi_i = \sum_{j=i}^{r} \frac{a_{j-i}}{a_0} \frac{q_j}{\tau^{r-j}} - \frac{x_i}{\tau^{r-i}}, \quad \eta_i = \tau^{i-1} \left(p_i - \frac{1}{\bar{g}^*} q_r(i) \right) \]

the overall closed-loop system is expressed by

\[
\begin{align*}
\dot{x} &= Ax + B \left[f + g[\eta_1 + \frac{1}{\bar{g}^*}(\bar{f}(z_c, T(\tau, \xi, x)) + \bar{g}u_r) + d] \right], \\
y &= x_1 \\
\dot{z} &= f_0(z, x) \\
\dot{z}_c &= \bar{f}_0(z_c, T(\tau, \xi, x)) \\
\tau \dot{\xi} &= \begin{bmatrix} -a_{r-1} & 1 & 0 & 1 \\ -a_{r-2} & 0 & 1 \\ \vdots \\ -a_0 & 0 \\ 0 \end{bmatrix} \xi - \tau B \left[f + g(\eta_1 + \frac{1}{\bar{g}^*}(\bar{f} + \bar{g}u_r) + d) \right] \\
\tau \dot{\eta} &= \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ -a_0 & -a_1 & \cdots & -a_{r-1} \end{bmatrix} \eta + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ a_0 \end{bmatrix} \left[\left(1 - \frac{g}{\bar{g}^*} \right) \left(\eta_1 + \frac{1}{\bar{g}^*}(\bar{f} + \bar{g}u_r) \right) - \frac{1}{\bar{g}^*}(f + gd) \right]
\end{align*}
\]

Robust stability of DOB structure with small τ

= Robust stability of Boundary-Layer subsystem

+ Robust stability of Quasi-Steady-State subsystem

controller C

\[\dot{c} = \Gamma(c, y, r) \]

\[u_r = \gamma(c, y, r) \]
Quasi-Steady-State Subsystem

Find eq. pnt. with $\tau = 0 \Rightarrow \xi^* = 0$ and $\eta^*_2 = \cdots = \eta^*_r = 0$

$$\eta^*_1 = \frac{1}{g(z, x)} \left[\left(1 - \frac{g}{\bar{g}^*} \right) (\bar{f}(z_c, x) + \bar{g}(z_c, x) u_r) - (f(z, x) + g(z, x) d) \right]$$

QSS subsystem:

- It is the same as the disturbance-free nominal closed-loop!
- z-dynamics becomes unobservable.
 - z-dynamics should be ISS (minimum phase in linear case).
- $\xi^* = 0$ implies $q = x$ (so Q-filter with the plant inverse acts as a state observer!)
Robust stability condition:

The following two are Hurwitz polynomials for all $g(z, x)$:

$s^r + a_{r-1}s^{r-1} + \cdots + a_1s + a_0 = 0$

$s^r + a_{r-1}s^{r-1} + \cdots + a_1s + \frac{g(z, x)}{g^*}a_0 = 0$

- Q-filter should be stable.
- No matter how large the uncertainty $g(z, x)$ is, once bounded, there are a_i’s so that two polynomials are Hurwitz!

- Semi-global result for boundedness of $g(z, x)$.
Robust stability of the closed-loop with DOB is guaranteed if, on a compact set of the state-space,

1. zero dynamics of uncertain plant is ISS,
2. outer-loop controller stabilizes the nominal plant,
3. coefficients of Q-filter are chosen for the RS condition,
4. τ is sufficiently small.
Robust Steady-State Performance

- **Nominal closed-loop**

 \[\dot{\bar{z}} = \bar{f}_0(\bar{z}, \bar{x}) \]
 \[\dot{\bar{x}} = A\bar{x} + B[\bar{f}(\bar{z}, \bar{x}) + \bar{g}(\bar{z}, \bar{x})u_r] \]
 \[\dot{\bar{c}} = \Gamma(\bar{c}, \bar{x}_1, r) \]
 \[u_r = \gamma(\bar{c}, \bar{x}_1, r) \]

 Sol. \(\bar{z}(t), \bar{x}(t), \bar{c}(t) \)

 with \(\bar{z}(0) = z_c(0), \bar{x}(0) = x(0), \bar{c}(0) = c(0) \)

 where \(z_c(0), x(0), c(0) \in \Omega \)

 “(slow) transient” \(\Rightarrow \) “steady-state”

- **Real closed-loop**

 \[\dot{z} = f_0(z, x) \]
 \[\dot{x} = Ax + B[f(z, x) + g(z, x)(u + d)] \]
 \[\dot{c} = \Gamma(c, x_1, r) \]
 \[u_r = \gamma(c, x_1, r) \]

 Sol. \(z(t), x(t), z_c(t), c(t), q(t), p(t) \)

 with IC in a compact set

 “(fast) transient” \(\Rightarrow \) “(slow) transient” \(\Rightarrow \) “steady-state”
Robust (slow) Transient Performance

I. Tikhonov’s theorem guarantees that

\[
\text{for given } \epsilon > 0, \exists \tau^* > 0 \text{ s.t., for all } 0 < \tau < \tau^*, \n\| [z_c(t); x(t); c(t)] - [\bar{z}(t); \bar{x}(t); \bar{c}(t)] \| \leq \epsilon, \forall t \geq 0 \n\]

with \([z_c(0); x(0); c(0)] = [\bar{z}(0); \bar{x}(0); \bar{c}(0)]\),

\[
\text{if } \eta(0) \to \eta^*(0) \text{ and } \xi(0) \to \xi^* \text{ as } \tau \to 0 \n\]

(\eta(0) \text{ and } \xi(0) \text{ depend on } \tau).

II. However, \(\eta(0)\) and \(\xi(0)\) become unbounded as \(\tau \to 0\).
Peaking phenomenon reflected in coordinate change

\[\xi_i = \sum_{j=i}^r \frac{a_{j-i} \cdot q_j}{a_0 \cdot \tau^{r-j}} - \frac{x_i}{\tau^{r-i}} \Rightarrow \xi_{r-2} = \frac{q_{r-2}}{\tau^2} + \frac{a_1 q_{r-1}}{a_0 \tau} + \frac{a_2 q_r - x_{r-2}}{\tau^2} \]
\[\xi_{r-1} = \frac{q_{r-1}}{\tau} + \frac{a_1 q_r - x_{r-1}}{a_0 \tau} \]
\[\xi_r = q_r - x_r \]

\[\eta_i = \tau^{i-1} \left(p_i - \frac{1}{g^*} q_r(i) \right) \Rightarrow \eta = \begin{bmatrix} p_1 \\ \tau p_2 \\ \vdots \\ \tau^{r-1} p_r \end{bmatrix} + T_a \begin{bmatrix} x_1/\tau^r \\ x_2/\tau^{r-1} \\ \vdots \\ x_r/\tau \end{bmatrix} + T_b \begin{bmatrix} q_1/\tau^r \\ q_2/\tau^{r-1} \\ \vdots \\ q_r/\tau \end{bmatrix} \]

\(x(0), p(0), q(0) \) in a compact set \(\Rightarrow \)

\(\begin{align*}
(a) & \quad |\xi(0)|, |\eta(0)| \to \infty \quad \text{as } \tau \to 0 \\
(b) & \quad |\xi(0)| \leq \frac{K}{\tau^{r-1}}, \quad |\eta(0)| \leq \frac{K}{\tau^r}
\end{align*} \)
Robust (slow) Transient Performance

I. Tikhonov’s theorem guarantees that

for given $\epsilon > 0$, $\exists \tau^* > 0$ s.t., for all $0 < \tau < \tau^*$,

$||[z_c(t); x(t); c(t)] - [\bar{z}(t); \bar{x}(t); \bar{c}(t)]|| \leq \epsilon$, $\forall t \geq 0$

with $[z_c(0); x(0); c(0)] = [\bar{z}(0); \bar{x}(0); \bar{c}(0)]$,

if $\eta(0) \rightarrow \eta^*(0)$ and $\xi(0) \rightarrow \xi^*$ as $\tau \rightarrow 0$

($\eta(0)$ and $\xi(0)$ depend on τ).

II. However, $\eta(0)$ and $\xi(0)$ become unbounded as $\tau \rightarrow 0$.

- “peaking phenomenon” of the state $p(t)$ and $q(t)$

is the cause of the unbounded I.C. $\xi(t)$ and $\eta(0)$.

Lesson: Due to peaking phenomenon, it is not true that conventional DOB recovers (slow) transient performance.
Saturating the Peaking Components

[Esfandiari & Khalil, 1992]

Peaking components that affect slow dynamics:

\[
\begin{align*}
\dot{x} &= Ax + B[f(z, x) + g(z, x)(u + d)] \\
\dot{z} &= f_0(z, x) \\
\dot{z}_c &= \bar{f}_0(z_c, q) \\
\dot{q} &= Q(\tau)q + \frac{a_0}{\tau r} Bx_1 \\
\dot{p} &= Q(\tau)p + \frac{a_0}{\tau r} Bu
\end{align*}
\]

Replace with

\[
\dot{z}_c = \bar{f}_0(z_c, \bar{s}_x(q))
\]

and

\[
u = \bar{s}_{\eta_1} \left(p_1 - \frac{1}{g^*} \dot{q}_r \right) + \frac{1}{g^*} \bar{s}_{\bar{x}_r} \left(\bar{f}(z_c, q) + \bar{g}(z_c, q) u_r \right)
\]
Stability Loss in BL Subsystem and its recovery by a dead-zone function

- BL η-dynamics becomes

$$\tau \dot{\eta} = \begin{bmatrix} 1 & 1 \\ 0 & -a_1 & \cdots & -a_{r-1} \end{bmatrix} \eta + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ a_0 \end{bmatrix} \left(-\frac{g}{g^*} \bar{s}_{\eta_1}(\eta_1) + \ldots \right)$$

and loses GES.

- Add a dead-zone function: $\bar{d}(\eta_1) := \eta_1 - \bar{s}_{\eta_1}(\eta_1)$

 to recover GES.
Stability Analysis of BL Subsystem with saturation & deadzone

\[\xi' = \begin{bmatrix} -a_{r-1} & 1 & \cdots & 1 \\ -a_{r-2} & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ -a_0 & 0 & \cdots & 0 \end{bmatrix} \xi - \tau B \left[f + g(\eta_1 + \frac{1}{\bar{g}^*}(\bar{f} + \bar{g}u_r) + d) \right] \]

\[\eta' = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 0 \end{bmatrix} \eta + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ a_0 \end{bmatrix} \left[-\frac{g}{\bar{g}^*} s_{\eta_1}(\eta_1) - \bar{d}(\eta_1) + F(\tau, \xi, t) \right] \]

\[\tilde{\eta} := \eta - \eta^*(t), \quad V_\xi = \xi^T P_\xi \xi \quad V_\eta = \tilde{\eta}^T P_\eta \tilde{\eta} \quad \text{Circle criterion guarantees GES with QLF.} \]

\[\frac{d}{dt} \left(\alpha V_\xi + V_\eta \right) \leq -\alpha c_1 |\xi|^2 + \alpha \tau c_2 |\xi| - c_3 |\tilde{\eta}|^2 + |\tilde{\eta}| (c_4 \tau + c_5 |\xi|) \]

\[\left\| \begin{bmatrix} \xi(T) \\ \tilde{\eta}(T) \end{bmatrix} \right\| \leq ke^{-\frac{\lambda T}{\tau}} \left\| \begin{bmatrix} \xi(0) \\ \tilde{\eta}(0) \end{bmatrix} \right\| \leq ke^{-\frac{\lambda T}{\tau}} \left(\frac{K}{\tau} + \tilde{k} \right) + \delta(\tau), \quad T > 0 \]
Application of Tikhonov’s Theorem for the second interval

Let \(X(t) = [z_c(t); x(t); c(t)] \) and \(\bar{X}(t) = [\bar{z}(t); \bar{x}(t); \bar{c}(t)] \).

- \(\epsilon_1 \to 0 \) as \(T \to 0 \)
- \(\epsilon_3 \to 0 \) as \(\epsilon_2 \to 0 \) and \(\tau \to 0 \)
- \(\epsilon_2 = \| X(T) - \bar{X}(T) \| \leq k e^{-\lambda \frac{T}{\tau}} \left(\frac{K}{\tau^r} + \hat{k} \right) + \delta(\tau) \)

\(\epsilon_2 = \| X(T) - \bar{X}(T) \| \to 0 \) as \(\tau \to 0 \)!
Summary:
Robust Transient Performance Recovery

For given $\epsilon > 0$, $\exists \tau^* > 0$ s.t., for all $0 < \tau < \tau^*$,

$$\| [z_c(t); x(t); c(t)] - [\bar{z}(t); \bar{x}(t); \bar{c}(t)] \| \leq \epsilon, \quad \forall t \geq 0$$

with $[z_c(0); x(0); c(0)] = [\bar{z}(0); \bar{x}(0); \bar{c}(0)]$,

thanks to saturation & dead-zone functions.
Proposed Nonlinear DOB Structure

\[\dot{z}_c = \tilde{f}_0(z_c, \bar{s}_x(q)) \]

\[\dot{q} = Q(\tau)q + \frac{a_0}{\tau_r} By \]

\[\dot{p} = Q(\tau)p \]

\[+ \frac{a_0}{\tau_r} B \left(\bar{s}_{\eta 1} \left(p_1 - \frac{1}{g^*} \dot{q}_r \right) + \left(1 - \frac{1}{g^*} \right) d \left(p_1 - \frac{1}{g^*} \dot{q}_r \right) + \frac{1}{g^*} \bar{s}_{\dot{x}_r} \left(\bar{f}(z_c, q) + \bar{g}(z_c, q) u_r \right) \right) \]

\[u = \bar{s}_{\eta 1} \left(p_1 - \frac{1}{g^*} \dot{q}_r \right) + \frac{1}{g^*} \bar{s}_{\dot{x}_r} \left(\bar{f}(z_c, q) + \bar{g}(z_c, q) u_r \right) \]
Example: Point Mass Satellite

\[\dot{\rho} = v \]

\[\dot{v} = \rho \omega^2 - \frac{K}{\rho^2} + \frac{1}{m}(u_\rho + d_\rho) \]

\[\dot{\phi} = \omega \]

\[\dot{\psi} = -\frac{2\nu \omega}{\rho} + \frac{1}{m \rho}(u_\psi + d_\psi), \]

\[
\begin{bmatrix}
 u_\rho \\
 u_\psi
\end{bmatrix}
\]

\[
\begin{bmatrix}
 \cos \theta(t) & -\sin \theta(t) \\
 \sin \theta(t) & \cos \theta(t)
\end{bmatrix}
\begin{bmatrix}
 u_1^+ \\
 u_2^+
\end{bmatrix}
\]

\[=: J(\theta(t)) u^+ \]

Unknown: \(m, K, d_\rho, d_\psi, \) and \(\theta(t) = \theta_0(t) + \tilde{\theta}(t) \) (\(|\tilde{\theta}(t)| < \pi/4\))

Measurement: \(\rho, \psi, \) and \(\theta_0(t) \)

Goal: \(x_{11} := \rho(t) - \rho_* \) and \(x_{21} := \rho_*(\psi(t) - \omega_* t) \) go to zero

Controller: \([\text{linear state feedback} + \text{linear observer (by linearization)}] + \text{DOB with linear nominal model}\)
Example: Point Mass Satellite

Nominal:

Real: with DOB (solid=nominal)

Real: w/o DOB:
Robust Stability Condition for Linear DOB

- back to linear
- presents simple linear robust stability condition working on frequency domain
Problem Formulation

- **Standing Assumption:** $P(s) \in \mathcal{P}$

 where \mathcal{P} is a collection of

 $$
 P(s) = \frac{\beta_{n-r} s^{n-r} + \beta_{n-r-1} s^{n-r-1} + \cdots + \beta_0}{\alpha_n s^n + \alpha_{n-1} s^{n-1} + \cdots + \alpha_0}
 $$

 α_i, β_i: bounded variation, α_n, β_{n-r}: does not change sign

- **Ass:** $C(s)$ is designed for $P_n(s)$.

- **Problem:** Design of $Q(s)$ for robust stability
Characteristic equation with $Q(s)$

We should choose a_i’s in

$$Q(s) = \frac{(\tau s)^l + b_{l-1}(\tau s)^{l-1} + \cdots + b_1(\tau s) + a_0}{(\tau s)^{l+r} + a_{l+r-1}(\tau s)^{l+r-1} + \cdots + a_1(\tau s) + a_0} =: \frac{N_Q(s, \tau)}{D_Q(s, \tau)}, \quad \tau > 0$$

so that the nine transfer functions from $[r, d, n]$ to $[\bar{e}, u, \bar{u}]$:

$$\frac{1}{\Delta(s)} \left[Q(P - P_n) + P_n, (Q - 1)PP_n, (Q - 1)P_n \right] \begin{array}{ccc}
Q(P - P_n) + P_n, & (Q - 1)PP_n, & (Q - 1)P_n \\
CP_n, & (1 - Q)P_n, & -Q - CP_n \\
CPP_n, & (1 - Q)PP_n, & (1 - Q)P_n
\end{array}$$

where $\Delta(s) = (1 + PC)P_n + Q(P - P_n)$

is Hurwitz. Equivalently, with

$$P(s) = \frac{N(s)}{D(s)}, P_n(s) = \frac{N_n(s)}{D_n(s)}, C(s) = \frac{N_c(s)}{D_c(s)}$$

the following Characteristic equation is Hurwitz:

$$\delta(s; \tau) := (DD_c + NN_c)N_nD_Q + N_QD_c(ND_n - N_nD)$$
Robust Stability of the Overall System

Lemma (from Rouche’s theorem): Relation between the roots of
\[p(s) = 0 \text{ and } p(s) + \tau q_1(s) + \tau^2 q_2(s) + \cdots + \tau^k q_k(s) = 0. \]

Observation 1:
\[\delta(s; \tau) := (DD_c + NN_c)N_nD_Q + N_QD_c(ND_n - N_nD) \]
\[\delta(s; 0) = a_0 N(s)(D_cD_n(s) + N_cN_n(s)) =: p_s(s) \]

Observation 2:
\[\tilde{\delta}(s; \tau) := \tau^m \delta(s/\tau; \tau), \quad m := \deg(DD_cN_n) = \deg(p_s(s)) \]
\[\tilde{\delta}(s; 0) = cs^m \left[D_Q(s, 1) + \left(\lim_{s \to \infty} \frac{P(s)}{P_n(s)} - 1 \right) N_Q(s, 1) \right] =: p_f(s) \]

Lemma: As \(\tau \to 0 \),
m roots of \(\delta(s; \tau) \) converge to m roots of \(p_s(s) \),
r roots of \(\delta(s; \tau) \) converge to \((1/\tau) \) times r roots of \(p_f(s) \).

Theorem: If (and only if)
(1) \(P_nC/(1 + P_nC) \) is stable
(2) \(P(s) \) is of minimum phase for all \(P(s) \in \mathcal{P} \)
(3) \(p_f(s) \) is Hurwitz for all \(P(s) \in \mathcal{P} \)
then \(\exists \tau^* \) so that the overall system is stable for all \(0 < \tau < \tau^* \).
Design of $Q(s)$: when

$$Q(s) = \frac{a_0}{(\tau s)^r + a_{r-1}(\tau s)^{r-1} + \cdots + a_0}$$

$p_f(s) = D_Q(s; 1) + \left(\lim_{s \to \infty} \frac{P(s)}{P_n(s)} - 1 \right) N_Q(s; 1)$

$$= s^r + a_{r-1}s^{r-1} + \cdots + a_1s + \left(\lim_{s \to \infty} \frac{P(s)}{P_n(s)} \right) a_0$$

cf. robust stability condition for nonlinear case was:

$$s^r + a_{r-1}s^{r-1} + \cdots + a_1s + \frac{g(z, x)}{g^*} a_0 : \text{Hurwitz}$$

How to choose $Q(s)$:

Choose a_i’s so that $s^{r-1} + a_{r-1}s^{r-2} + \cdots + a_1 = 0$ is Hurwitz.

Since $0 < \left(\lim_{s \to \infty} \frac{P(s)}{P_n(s)} \right) < \lambda$ with some constant λ, we can choose sufficiently small a_0 so that

$s^r + a_{r-1}s^{r-1} + \cdots + a_1s + \lambda a_0 = 0$ is Hurwitz.
Discussion: Answers to the raised questions

1. It does not work for non-minimum phase plant.
 ✓ Correct, for small τ.

2. Small τ destabilizes the closed-loop.
 ✓ No, if $Q(s)$ satisfies RS condition. It may be the effect of ‘initial peakings’ but not a destabilization.

3. It cannot handle large parameter variation.
 ✓ No in general. By following the design guidelines, any bounded variation can be handled.

4. Higher order $Q(s)$ leads to instability.
 ✓ No in general. But, for higher order $Q(s)$, the selection of coefficients becomes more complicated.
Experiments

robust stability condition in action

Taken from
• Yi, Chang, & Shen, IEEE/ASME Trans. Mechatronics, 2009
Disturbance-Observer-Based Hysteresis Compensation for Piezoelectric Actuators

Jingang Yi, Senior Member, IEEE, Steven Chang, and Yantao Shen, Member, IEEE

Fig. 4. PMN-PT/PDMS cantilever actuator.
Step responses
Robust tracking control

Hyundai HS-165 (handling 165kg)

\[\dot{p}_1 = p_2 \]
\[\dot{p}_2 = -\frac{a_0}{\tau} p_1 - \frac{a_1}{\tau} p_2 + \frac{a_2}{\tau^2} u \]

\[\dot{q}_1 = q_2 \]
\[\dot{q}_2 = -\frac{a_0}{\tau} q_1 - \frac{a_1}{\tau} q_2 + \frac{a_2}{\tau^2} \theta_m \]

Robust tracking control

Experiment results

![Graphs showing x position over time for conventional and proposed methods.](image-url)
Summary

- theoretical study on DOB
- robust stability condition
 (new even for classical linear DOB)
- transient performance recovery
 (thanks to saturation/dead-zone functions)
- DOB = Inner-loop controller = Your first AID kit!
THANK YOU
감사합니다

Any feedback or comments are welcome
hshim@snu.ac.kr